The generator matrix

 1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  X  1  1  1  1  1  1  1  X  1  1  1  X  1  1  1  1  1  1  X  X
 0  X  0  0  0  0  0  0  0  X  X  X  0  X  0  0  X  0  X  X  0  0  0  0  0  X  0  X  0  0  0  X  X  X  0  X  0  0  X  X  X  X  X  X  0  0  X  0  0  X  0
 0  0  X  0  0  0  0  0  X  X  X  X  0  0  0  X  0  X  X  0  0  0  0  0  0  0  X  X  X  X  X  X  0  0  0  X  0  0  X  X  0  0  X  0  X  0  X  X  0  0  X
 0  0  0  X  0  0  0  0  X  0  0  X  0  X  0  0  0  0  0  0  X  X  X  X  X  0  X  0  X  X  X  X  0  0  X  X  X  0  0  0  X  0  X  0  0  X  X  0  X  0  0
 0  0  0  0  X  0  0  0  X  0  X  X  X  0  0  X  X  0  0  X  X  X  X  X  0  0  0  X  0  0  0  X  0  0  0  X  0  X  0  X  X  0  X  0  X  X  0  X  0  X  X
 0  0  0  0  0  X  0  0  X  0  X  0  0  X  X  X  0  0  X  X  0  0  0  X  X  X  X  0  X  0  0  X  0  X  0  X  X  X  0  0  X  X  0  X  0  X  0  0  X  X  0
 0  0  0  0  0  0  X  0  X  X  0  0  0  X  X  0  X  X  X  0  0  0  X  X  0  0  0  0  X  X  0  0  X  0  X  X  0  0  X  0  X  X  X  X  0  X  0  X  X  0  X
 0  0  0  0  0  0  0  X  X  X  0  X  X  0  X  0  0  0  X  X  0  X  X  0  0  0  0  0  X  0  X  X  0  X  0  0  X  X  X  X  0  0  X  X  0  X  0  0  0  0  X

generates a code of length 51 over Z2[X]/(X^2) who�s minimum homogenous weight is 44.

Homogenous weight enumerator: w(x)=1x^0+60x^44+8x^46+112x^48+80x^50+124x^52+40x^54+40x^56+39x^60+7x^64+1x^92

The gray image is a linear code over GF(2) with n=102, k=9 and d=44.
This code was found by Heurico 1.16 in 0.0876 seconds.